Composite Optimization by Nonconvex Majorization-Minimization
نویسندگان
چکیده
Many tasks in imaging can be modeled via the minimization of a nonconvex composite function. A popular class of algorithms for solving such problems are majorizationminimization techniques which iteratively approximate the composite nonconvex function by a majorizing function that is easy to minimize. Most techniques, e.g. gradient descent, utilize convex majorizers in order guarantee that the majorizer is easy to minimize. In our work we consider a natural class of nonconvex majorizers for these functions, and show that these majorizers are still sufficient for a provably convergent optimization scheme under quite general assumptions. Numerical results illustrate that by applying this scheme, one can often obtain superior local optima compared to previous majorization-minimization methods, when the nonconvex majorizers are solved to global optimality. Finally, we illustrate the behavior of our algorithm for depth super-resolution from raw time-of-flight data.
منابع مشابه
On the Global Convergence of Majorization Minimization Algorithms for Nonconvex Optimization Problems
In this paper, we study the global convergence of majorization minimization (MM) algorithms for solving nonconvex regularized optimization problems. MM algorithms have received great attention in machine learning. However, when applied to nonconvex optimization problems, the convergence of MM algorithms is a challenging issue. We introduce theory of the KurdykaLojasiewicz inequality to address ...
متن کاملMIMO Transmit Beampattern Matching Under Waveform Constraints
In this paper, the multiple-input multiple-output (MIMO) transmit beampattern matching problem is considered. The problem is formulated to approximate a desired transmit beampattern (i.e., an energy distribution in space and frequency) and to minimize the cross-correlation of signals reflected back to the array by considering different practical waveform constraints at the same time. Due to the...
متن کاملMajorization-minimization generalized Krylov subspace methods for lp-lq optimization applied to image restoration
A new majorization-minimization framework for lp-lq image restoration is presented. The solution is sought in a generalized Krylov subspace that is build up during the solution process. Proof of convergence to a stationary point of the minimized lp-lq functional is provided for both convex and nonconvex problems. Computed examples illustrate that high-quality restorations can be determined with...
متن کاملMajorization-Minimization Algorithms for Wavelet-Based Image Restoration
Standard formulations of image/signal deconvolution under wavelet-based priors/regularizers lead to very high-dimensional optimization problems involving the following difficulties: the non-Gaussian (heavy-tailed) wavelet priors lead to objective functions which are nonquadratic, usually nondifferentiable, and sometimes even nonconvex; the presence of the convolution operator destroys the separ...
متن کاملDCOOL-NET: Distributed cooperative localization for sensor networks
We present DCOOL-NET, a scalable distributed in-network algorithm for sensor network localization based on noisy range measurements. DCOOL-NET operates by parallel, collaborative message passing between single-hop neighbor sensors, and involves simple computations at each node. It stems from an application of the majorization-minimization (MM) framework to the nonconvex optimization problem at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.07072 شماره
صفحات -
تاریخ انتشار 2018